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Abstract

We present a system for reconstructing, compressing,
and real-time rendering of NeRF (light field) video, with a
more practical format and orders of magnitude faster pro-
cessing than prior work [5]. Current immersive 3D VR
video is stereoscopic, and does not respond to translation
in the user’s viewpoint, which can cause motion sickness
due to a conflict between the user’s perception of motion ac-
cording to their eye and vestibular system. To avoid motion
sickness, novel view rendering in real-time with 6 degrees of
freedom is required. We accomplish this by baking neural
radiance fields into layered depth images in inflated equian-
gular projection, with inverse depth maps stored via a 12-
bit error correcting code in an 8-bit/channel container. The
final representation can be compressed using conventional
h264, h265, or ProRes, streamed over the internet, edited
in existing video tools, and rendered in real-time on mobile
VR devices, in a web browser, or in game engines such as
Unity and Unreal (we provide open source implementations
for all of these platforms). The proposed methods are sim-
ple and compatible with any 3D or 4D radiance field. As
part of our evaluation, we provide interactive demos of sev-
eral scenes, some of which are static and captured with a
regular phone, and others are video captured with an array
of 46 synchronized cameras on a hemispherical dome.

1. Introduction
We are interested in a practical system for capturing,

rendering, editing, and deploying “immersive volumetric
video.” By immersive, we mean that the video covers the
entire field of view of mobile VR/AR/MR devices while al-
lowing some motion for the user. In this work we are fo-
cused on fields of view close to 180◦ (as opposed to 360◦,
which is another flavor of immersive video). We use the
term “volumetric” loosely to convey the intuition that it is a
type of 3D video which supports photorealistic novel view
synthesis from arbitrary poses with 6 degrees of freedom
(6DOF). Photorealistic implies handling complex phenom-
ena that appear in the real world, such as thin structures,

partially transparent materials, and view-direction depen-
dent effects. Different from most other “volumetric” video,
we focus on inside-out capture of hemispherical scenes in-
stead of outside-in capture of a single subject. The prob-
lem we address might also be called light field video, or
4D/time-varying neural radiance fields. By video we sim-
ply mean we must support capture and playback of time-
varying scenes, although the proposed methods work for
static capture as well.

We aim to create a system which meets several require-
ments (prior work has addressed some but not all of these
simultaneously):

• Photorealistic 6DOF novel view synthesis with near
180◦ field of view, within a small viewing volume
(about 0.5m radius).

• Video can be compressed using only universally sup-
ported features of conventional codecs such as h264.

• Video format should be possible to edit (at least basic
cuts) in existing video tools.

• Can be decoded and rendered in real time on a wide
variety of platforms with relatively little GPU power.

• The spatial resolution of the video must be high
enough to appear sharp in VR displays.

• Processing and encoding cannot be prohibitively slow.

• Static or dynamic scenes can be captured with any
camera system a user has at their disposal, ranging
from a phone, to a light field array.

Current-generation 3D VR video formats such as VR180
and omnidirectional stereo are immersive, and are often ren-
dered by projecting a texture for the left and right eye on
spherical geometry that is far away. This approach results
in the user seeing stereoscopic views which respond only to
their head rotation, but not translation (as tracked by a head-
mounted display). These purely stereoscopic formats do
not enable rendering novel views from arbitrary poses with
6DOF. This limitation can cause motion sickness for a user,



because if they move their head, their vestibular system per-
ceives motion, while their eyes will not see a corresponding
motion. Even rotating while staying in place causes enough
translation to be subtly incorrect without 6DOF rendering.
6DOF is necessary to avoid motion sickness, but it is much
more difficult to create, edit, compress, and render 6DOF
video. The current state of the VR video industry is that
the vast majority of video is not 6DOF, due to the technical
challenges with creating it.

In order to accelerate adoption of immersive volumetric
video, we aim to devise a format which is easy for creators
to work with, and can be deployed across a wide variety
of platforms and limited devices. To this end, we seek an
encoding scheme which relies on only the most universally
supported features of conventional 2D video codecs such as
h264, h265, VP9, and ProRes. This means we assume lossy
compression, no alpha channels, no more than 8 bits pers
channel, no multi-view encoding, 422 chroma subsampling,
and avoid the use of additional data streams (which are not
trivial to decode or perfectly synchronize in all browsers).
An ideal format can be edited (at least basic cuts, if not more
advanced effects) in widely used video tools such as Adobe
Premiere, Final Cut Pro, or DaVinci Resolve. Prior work [5]
made considerable progress on similar goals to ours, but in
our view its widespread adoption has been limited by the
complexity of their format, prohibitive runtime for process-
ing necessitating cloud infrastructure, and insufficient spa-
tial resolution for VR. Therefore we also aim to estimate a
volumetric representation and compress it into a streamable
format in reasonable amount of time on a single worksta-
tion, and to do this with roughly “8K” resolution which is
now expected in VR video (in our experience, users are ex-
tremely sensitive to resolution and may prefer higher res-
olution video even if it is not 6DOF; therefore we believe
high resolution is key to adoption). Finally, we aim for a
system which can ingest camera data from a wide variety
of camera systems, ranging from monoscopic capture with
phones to light field camera arrays [19].

Recently, neural radiance fields (NeRF) [16] have
emerged as a powerful category of methods for reconstruct-
ing a 3D model from one or more images of a scene, and
enabling photorealistic novel view synthesis. This is ac-
complished by using a neural net to represent a radiance
field, which maps a 3D point and ray direction to color and
density, then training the net by minimizing a loss between
predicted pixel colors obtained by differentiable volumet-
ric rendering, and ground truth colors from pixels in real
images. Some areas of active research for NeRF include
extensions to time-varying scenes, and real-time rendering.
Layered depth images (LDI) are another representation for
novel view synthesis [20]. LDIs consist of a set of layers,
each of which has color and alpha channels, and a depth
map which defines its 3D geometry. LDIs and NeRF have

different strengths and weaknesses. This work illustrates
some connections between the two methods.

We demonstrate a complete system for immersive vol-
umetric video, which simultaneously addresses all of the
goals stated above. Our contributions include:

• We show how to bake neural radiance fields into lay-
ered depth images with only a few layers, which en-
ables extremely fast rendering of photorealistic novel
views within a limited viewing volume (Sec. 3.3).

• We show how to encode LDIs with immersive field of
view and high spatial resolution (in a foveated center
region) using inflated equiangular projection, and how
to encode inverse depth maps with 12-bits of accuracy
in a lossy 8-bit/channel container (Sec. 3.1). A se-
quence of such LDIs can be encoded with universally
supported features of conventional video codecs.

• To evaluate the proposed methods, we construct neu-
ral radiance fields and bake them into the proposed
encoding using two datasets: one consisting of static
scenes captured with a phone, and another using a light
field video array with 46-cameras on a hemispherical
dome [5]. Our proposed methods are several orders of
magnitude faster than prior work [5]. We provide inter-
active demos online which work in a 2D web browser
on desktop or mobile, or in VR head-mounted displays
including Meta Quest Pro, Quest 3, and Apple Vision
Pro, via WebXR.

• We provide open source implementations for baking a
radiance field into a layered depth image with our pro-
posed encoding, and for real-time rendering on web,
and Unity and Unreal Engine (game engines).1

2. Background
We begin with a review of projections for immersive me-

dia, and volumetric rendering of radiance fields, building
toward our proposed methods.

2.1. Equirectangular and Equiangular Projections

Equirectangular projection (Fig. 1a) is widely used in
virtual reality video and photos to wrap a rectangular im-
age around a sphere or half of a sphere. For example, the
VR180 format, which has become increasingly popular in
recent years, consists of a stereoscopic pair of images (one
for each eye) in equirectangular projection, with 180◦ hori-
zontal and vertical field of view. Equirectangular projection
is used for both 360◦ and 180◦ content.

Equirectangular projection is arguably not the best
choice for 180◦ content, because it has the lowest pixel den-
sity in the forward direction, and higher pixel density in the

1https://github.com/fbriggs/lifecast_public

https://github.com/fbriggs/lifecast_public


(a) Equirectangular (b) Equiangular (c) Inflated equiangular

Figure 1. Equirectangular, equiangular, and inflated equiangular projections. Photo by Thomas Hübner.
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(a) 2D image view of equiangu-
lar projection, showing an example
where the image circle exceeds the
image dimensions.
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(b) 3D view of equiangular projec-
tion, showing the ray direction cor-
responding to pixel (x, y).

Figure 2. Equiangular projection defines a correspondence be-
tween a pixel coordinates (x, y) and ray directions d(x, y) via
polar coordinates of the pixel (r, θ).

peripheral part of the view. This is the opposite of what we
want, because we expect users to mostly look forward. An
alternative is equiangular projection (Fig. 1b), which is less
commonly used to deliver immersive media, and more of-
ten used to represent fisheye lenses. Equiangular projection
has a desirable property of putting more pixel density in the
forward direction compared with equirectangular.

Fig. 2 illustrates how equiangular projection defines a
correspondence between pixel coordinates (x, y) in a 2D
image with dimensions w × h, and a ray direction in 3D
space d(x, y). Equiangular projection can be parameterized
in terms of a focal length but we find it more convenient to
specify r90, the radius in pixels at which the angle is 90◦ off
forward (for 180◦ total FOV). The pixel coordinate (x, y) is
rewritten in polar coordinates relative to the image center as
(r, θ). In 3D, the corresponding ray direction is written in
spherical coordinates using the same angle θ, and the angle

off forward ϕ, where

ϕ =
π

2
r′ where r′ =

r

r90
(1)

then the ray direction (using OpenGL coordinate conven-
tions) is

d(x, y) =

cos(θ) sin(ϕ)sin(θ) sin(ϕ)
− cos(ϕ)

 (2)

We modify equiangular projection to put even more pixel
density in the forward direction in Sec 3.1.2.

3. Proposed Methods
Our proposed methods consist of two main parts: several

tricks for immersive LDI video, and a method for baking
radiance fields into LDIs.

3.1. Immersive Layered Depth Images and Video

In this section, we describe a few tricks for representing
layered depth images that are optimized for video, and for
immersive fields of view.

3.1.1 Equiangular with image circle larger than image

With equiangular projection, it is typical to use a square im-
age (w = h), and r90 = w

2 , which fits the circle correspond-
ing to 180◦ field of view exactly in the square image. We
instead find it useful to use r90 = S w

2 , where S is a scal-
ing parameter we are free to choose. Figure 2a illustrates
the case where S > 1, and the image circle does not fit in-
side the image. The horizontal and vertical FOV is less than
180◦; this is a tradeoff that produces higher pixel density at
a fixed resolution. In our experiments, we use S = 1.15, for
slightly less than 180◦ FOV (but still enough to be “immer-
sive”), and slightly higher pixel density.



(a) Layer l = 1 (b) Layer l = 2. (c) Layer l = 3

(d) Layer l = 1 (e) Layer l = 3 (f) Layer l = 2

Figure 3. A layered depth image with 3 layers, in equiangular projection. (a-c) show the color and alpha channel (Cl, al), and (d-f) show
the inverse depth map vl.

3.1.2 Inflated equiangular projection

(a) Equirectangular, center crop. (b) Inflated equiangular, center crop.

Figure 4. The center 512×512 pixels cropped from a 4400×4400
equirectangular image, compared with the center 512×512 pixels
from a 1920× 1920 inflated equiangular image.

Equiangular projection puts higher pixel density com-
pared with equirectangular in the forward direction, which

is good. We take this idea further by introducing “inflated
equiangular” projection, which further magnifies the part of
the scene in the forward direction, with a tradeoff of reduc-
ing pixel density in the peripheral directions. Equation (1)
changes to

ϕ =
π

2
[βr′ + (1− β)r′γ ] (3)

where β ∈ (0, 1] and γ > 1 are aesthetic parameters which
control the shape of inflation. We use β = 0.5 and γ = 3.
Figure 1c shows an inflated equiangular image with these
parameters, and S = 1.15. Figure 4 compares the center
512× 512 pixels of an inflated equiangular image with res-
olution 1920× 1920, with the center 512× 512 pixels of an
equirectangular image with resolution 4400 × 4400.2 This
comparison shows that the pixel densities are similar (in the

2In VR180 format, when one eye’s image is roughly 4000×4000, this
is called “8K” resolution because the left right eye are stacked horizontally.
Hence, the pixel density for an inflated equiangular image at 1920× 1920
is comparable to 8K VR180.



(a) 8-bit. (b) 12-bit.

Figure 5. A rendering of the same LDI, with the inverse depth
map stored in either 8 or 12 bits. With 8 bits, there are noticeable
staircase artifacts.

forward direction), despite the much lower resolution used
with inflated equiangular projection.

3.1.3 12-bit inverse depth in an 8-bit container

We are interested in storing immersive LDIs using only
the most universally supported features of standard formats
such as png, jpg, and mp4, and in working within the con-
straints of deployment environments including the web, ren-
dering in OpenGL, and in game engines, etc.

Depth values t naturally have values in [0,∞), which
cannot be stored in universal web formats. Therefore it is
useful to store depth maps using encoded inverse depth val-
ues, defined as

v = [K/t]01 (4)

where [·]01 denotes clamping to [0, 1], t is a depth in units of
meters, and K is a constant that adjusts the scaling of the in-
verse depth map (we use K = 0.3). The value of v is stored
as the intensity of a pixel in an image or video file, and is
quantized to the bit-depth of the container. 8-bit/channel is
fairly universal, whereas 10-bit (or more) video compres-
sion codecs are not supported on all browsers and devices,
and even when supported, may come with significant per-
formance tradeoffs.

However, encoding inverse depth with 8-bit accuracy
produces unacceptable staircase artifacts (Fig. 5a) when
rendering the resulting LDI from novel views. With a 12-bit
encoding of v, the staircase artifacts are much less appar-
ent (Fig. 5b). Therefore we consider how to store a 12-bit
encoding of v in an 8-bit/channel image or video format.
A few further issues complicate this endeavor: first, video
compression codecs often use chroma-subsampling, so we
avoid trying to pack data into different color channels of
the same pixel, and instead only use luminance. Second,
the data may be stored with lossy compression, and simply
encoding as a texture and then decoding in OpenGL may
be a lossy operation in terms of preserving individual bits.
Lossy compression for color images may be acceptable, but

corruption of the most significant bits of the depth map can
produce major artifacts.

Our approach is to store two 8-bit values in different
regions of a container image or video, which can be re-
assembled into a 12-bit value, using an encoding that is ro-
bust to some corruption. We store the inverse depth map
at half the resolution of the color map, to make space for
storing these two copies; in typical use, this doesn’t come
with any loss of quality when rendering the LDI in realtime,
because realtime rendering is done via a triangle mesh that
is lower resolution than even the half-resolution depth map
(due to limitations of the rendering devices). A higher res-
olution depth map just gets aliased anyway.

void encode12(
const float v,
uint8_t& low,
uint8_t& high)

{
int iv = v * ((1 << 12) - 1);
high = iv >> 8;
low = iv & ((1 << 8) - 1);
low = (iv & (1 << 8)) == 0 ? low : 255 - low;
high = high * 16 + 8;

}

Listing 1. C++ code for 12-bit encoding

float decode12(
uint8_t low,
uint8_t high)

{
high = high / 16;
low = (high & 1) == 0 ? low : 255 - low;
int i12 = (low & 255) | ((high & 15) << 8);
float v = float(i12) / float((1 << 12) - 1);
return v;

}

Listing 2. C++ code for 12-bit decoding

The bit-level logic is inspired by the Pack10 algorithm
[7], which produces better compression than simply split-
ting the bits of a 12-bit value naively, by “folding” bits to
reduce high-frequency banding patterns. Listings 1 and 2
give C++ code for encoding and decoding the 12-bit inverse
depth values into “high” and “low” 8-bit values.

3.1.4 The ldi3 Format

‘ldi3’ is a format for immersive layered depth images and
video [4] which incorporates the tricks mentioned above,
and is optimized for video on devices with limited GPU
power, circa 2024 (e.g., Meta Quest 2, Quest 3, Quest Pro,
Apple Vision Pro, mobile phones and tablets, etc). Across
these VR devices, we identify a baseline set of video decod-
ing capabilities, and optimize the ldi3 format around work-
ing within these limitations. The maximum resolution video
that can be decoded is 5760 × 5760 at 30 or 60 frames per
second, 8 bit, RGB (not RGBA). Mobile phones may have



Layer l=1

Layer l=2

Layer l=3

Color (r, g, b) Alpha channel (a)Inverse depth (v), 12-bit encoding

Figure 6. An example in the ldi3 format, which uses inflated equiangular projection, and 3 layers with color, alpha, and 12-bit inverse
depth encoded into an 8-bit container.

a lower maximum resolution, e.g., 1920× 1920, but we can
construct an ldi3 frame at the full resolution, then down-
scale, and the 12-bit inverse depth encoding does not break
due to the resizing operation. The question now is, how can
we best utilize these 5760× 5760 pixels?

With ldi3, we choose the number of layers Nl = 3 be-
cause because we can store a 3×3 grid of 1920×1920 cells
in 5760×5760, and with inflated equiangular projection, the
center of a 1920 × 1920 image has similar pixel density to
“8K” VR180 in equirectangular projection. Increasing the
number of layers beyond three would come with a tradeoff
in spatial resolution which we think is unacceptable to most
users (resolution is one of the most important qualities of

immersive video that users notice). Furthermore, our pre-
liminary experiments suggest that WebXR/OpenGL render-
ing of more than three layers is not fast enough on current
mobile VR devices due to alpha blending operations. So
it appears that on current hardware, three layers is a sweet
spot. More layers could enable representing more geomet-
rically complex scenes, but we show that with careful con-
struction, three layers is sufficient to achieve good novel
view synthesis on many real-world scenes.

Figure 6 illustrates the ldi3 format. Each row corre-
sponds to one layer. The left column stores the RGB color
for the layer. The right column stores the alpha channel.
The middle column stores inverse depth maps in 12-bit en-



coded format. Each 1920 × 1920 region in the middle col-
umn is divided into four cells, each half the size. The upper
two of these store the high and low bits in the 12-bit encod-
ing. The lower two are unused; we store an 8-bit version of
the inverse depth map in one of these cells just for human
readability, and the other is left empty. These cells could be
used for something else in future work, e.g., to encode data
for view-dependent effects.

3.1.5 Rendering ldi3 in real time

Once we have an image or video in ldi3 format, the main
use is to be able to render it from novel views in real time,
on a variety of platforms such as WebXR (OpenGL), and
game engines such as Unity and Unreal Engine. We provide
open source implementations of players for all of these plat-
forms.3 In this section we give a high-level description of
how to render ldi3 in a 3D graphics engine such as OpenGL,
which uses vertex and fragment shaders.

The main idea is to construct a triangle mesh for half a
unit sphere, store the ldi3 image in a texture (which updates
each frame for video), then use a vertex shader to scale each
vertex so that instead of being a unit vector, its length is the
decoded value of the inverse depth map for that layer. The
initial vertex positions are constructed by iterating over a
grid in pixel coordinates, and applying Eqn. 2 to get the
corresponding ray direction. The vertex shader must im-
plement the bit-level decoding logic seen in Listing 2. The
fragment shader is relatively simple; it just gets the RGB
and alpha channels from their respective regions of the ldi3
encoding and uses that as the fragment color.

The alpha channel for the farthest layer is optional; if it
is unused, the fragment shader can be optimized to not read
the alpha channel from the texture, and not perform alpha
blending for that layer, and this space in the ldi3 format is
also unused and available for other purposes. If the alpha
channel of the last layer is used, it enables other applications
such as “pass through” video for mixed reality.

3.2. Volumetric Rendering of Radiance Fields

We begin by restating the rendering equations for classic
NeRF [16], which we will build upon for baking an LDI.
A radiance field is a function which maps a position in 3D
space x, and a ray direction d, to a color c = (r, g, b), and
a density σ, i.e.,

F (x,d) = (c, σ) (5)

In practice, F is often represented by a neural net or data
structure with some neural components.

To render a pixel (x, y) in an image, we start with a cam-
era model which associates the pixel with a ray direction

3https://github.com/fbriggs/lifecast_public

d(x, y), and a ray origin o, then evaluate the radiance field
F at N samples along the ray, at depth ti for i = 1 . . . N . At
points o+tid, the sampled radiance values are (ci, σi). The
density values σ are related to alpha values in traditional al-
pha compositing; based on the distance between consecu-
tive samples δi = ti+1 − ti, the alpha value is

αi = 1− exp(−σiδi) (6)

The color for the pixel from volumetric rendering is a
linear combination of the colors sampled from the radiance
field,

C(x, y) =

N∑
i=1

wici (7)

The weights in the linear combination are

wi = αi

i−1∏
j=1

(1− αj) (8)

= αiTi where Ti = exp

−
i−1∑
j=1

σjδj

 (9)

Ti is referred to as transmittance. Eqn. 9 is more common
in papers, while Eqn. 8 more closely resembles most code.

It is also common to render a depth map along with an
image, and this is typically done by linearly combining the
depths along the ray, i.e.

t(x, y) =

N∑
i=1

witi (10)

It will be necessary to modify these equations for the
purpose of baking an LDI.

3.3. Baking Radiance Fields into LDIs

For each pixel and layer in an LDI, we store a color, al-
pha channel, and inverse depth value. Layers are indexed
l = 1 . . . Nl. At pixel (x, y), in layer l, the LDI stores:

LDI(l, x, y) = (Cl, al, vl) (11)

where Cl = (r, g, b) is a color, al is an alpha channel, and
vl is an inverse depth.

Now we show how to construct an LDI(l, x, y) from a
radiance field F (x,d). For each layer l = 1 . . . Nl and
each pixel (x, y) in the LDI, we obtain a ray origin o and
ray direction d(x, y),4 sample the radiance field at depths ti

4The ray origins and directions for the LDI need not correspond to any
camera in the training data used to learn the radiance field. Indeed, they
may not even use the same mapping from pixel coordinates to ray direc-
tions; we train on images in rectilinear projection, but the LDI uses inflated
equiangular projection. This simply means there is a different equation for
d(x, y) when we are considering pixels in the LDI or pixels in a training
image.

https://github.com/fbriggs/lifecast_public
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Figure 7. The radiance field is sampled at points along a ray. Each
point belongs to one layer of the LDI.

along the ray to obtain (ci, σi), and use a modified version
of the volumetric rendering equations given in Section 3.2
to calculate (Cl, al, vl).

Our approach to constructing an LDI from a radiance
field is based on a simple idea (Fig. 7): for each layer l, de-
fine a lower and upper bound tmin(l) and tmax(l), and limit
contributions to volumetric rendering to samples within that
range of depths. This changes the α values associated with
samples of the radiance field,

α̂l
i =

{
αi if tmin(l) < ti ≤ tmax(l)

0 otherwise
(12)

where αi is defined in Eqn. 6, and α̂l
i denotes the modified

version used to construct layer l of the LDI.
Our goal is to calculate (Cl, al, vl) for each layer in the

LDI. We start with the alpha channel al (not to be confused
with α associated with samples from the radiance field),

al =

N∑
i=1

ŵl
i where ŵl

i = α̂l
i

i−1∏
j=1

(1− α̂l
j) (13)

Note that a is not necessarily 1 in every layer of the LDI,
because the region of 3D space corresponding to that layer
may be empty (near zero σ) or partially transparent. The
weights ŵl

i do not sum to 1 in such cases.
Weights not summing to 1 requires subtle modifications

to the equations for color and depth to avoid biases and arti-
facts. Similar to Eqn. 7, the color is a linear combination of
colors from sampled points, but it is necessary to normalize
to avoid tinting colors toward black in regions where a < 1.

Cl =

∑N
i=1 ŵ

l
ici

al + ϵ
where ϵ = 1e−10 (14)

A naive approach to construct the inverse depth v for a
layer is to compute depth according to Eqn. 10, then ap-
ply Eqn. 4. The problem is that when a < 1, the depth
estimated by Eqn. 10 is biased toward 0, which causes the
silhouettes of objects, where the LDI transitions from a = 1
to a = 0, to be closer to the origin than the object. It doesn’t
matter what v is if a = 0 because that part is invisible, but
when 0 < a < 1 it breaks the LDI rendering. To fix this
problem, we linearly combine inverse depths and normalize
by alpha,

vl =

∑N
i=1 ŵ

l
i[K/(ti + ϵ)]01
al + ϵ

(15)

When baking a radiance field into an LDI, some consid-
eration must be given to the sampling strategy. In the origi-
nal NeRF paper [16], a “fine” radiance model, and smaller,
faster “course” radiance model are both trained on photo-
metric loss. First, Nc samples are taken from the course
model using a stratified sampling strategy, then the weights
(Eqn. 8) are computed based on these samples, which es-
timates how much they contribute to the final image. The
weights are normalized to form a probability density func-
tion, from which Nf further samples are drawn. This can be
viewed as importance sampling from a distribution which
depends only on transmittance [13]. In MipNerf360 [2],
the fine model is replaced with a proposal network, which
is trained via a different loss function, but the same gen-
eral importance sampling framework is present. In original
NeRF [16], all Nc +Nf samples are combined, and evalu-
ated in the fine network to compute the final pixel color. In
later works [2] it appears to be less common to include the
initial Nc samples to compute the final color, and only to
use the importance samples.

This is a sensible strategy for rendering a 2D image, but
requires some adjustment for baking an LDI. The issue with
only using importance samples is that behind any solid ob-
ject, the weights are zero, so there will be zero importance
samples in that region. We need to have some samples in
occluded parts of the scene, to create a proper multi-layered
effect. In our experiments, we use a similar proposal net-
work sampling strategy to [2] while training the radiance
model (only using the importance samples), but then during
LDI baking, we use both the initial samples to the proposal
network and the importance samples. More advanced ideas
are possible, but this suffices to avoid completely under-
sampling occlusions.

3.3.1 Locally adaptive depth bounds

Figure 7 illustrates a case where the bounds tmin(l) and
tmax(l) are constant for all rays, resulting in each layer
corresponding to a spherical shell around the origin. This
approach is sufficient for some scenes, and has a desirable
property of producing clean alpha channels, which could



be edited with existing video tools. However, every ray
can have different bounds, and many heuristics are possible
for selecting these bounds. Well chosen bounds can reduce
stretched-triangle artifacts while keeping the number of lay-
ers Nl small. We use the following heuristic for 3 layers:

• Render an inverse depth map of the scene in inflated
equiangular projection.

• Apply an erosion and dilation operation to the inverse
depth map at multiple scales, and combine these val-
ues to obtain a heuristic score for each pixel to be fore-
ground, middle, or background.

• For each of foreground, middle, and background, solve
a least squares optimization problem to obtain an in-
verse depth map which matches the rendered depth
map where the heuristic score is high, and is smooth
otherwise.

• The bounds are half-way (in inverse depth) between
the foreground and middle, or middle and background.

4. Experiments
In this section, we present the details of our NeRF im-

plementation and training, for completeness (but we em-
phasize that the method for baking is independent of the
NeRF implementation and could be be interchanged for any
other radiance model). Then we describe two datasets used
for evaluation, one from a lightfield video camera array [5],
and the other consisting of static scenes captured with short
videos on an iPhone 14.

We are primarily interested in the qualitative result-
does this approach produce 6-degree of freedom immersive
videos and photos that can be viewed on conventional VR
devices (or any other device), with some freedom of motion
for the user, and acceptable visual quality? To this end, we
provide web demos that can be viewed in 2D or in WebXR,
showing several challenging video and photo scenes. The
demos are available at https://lifecast.ai.

4.1. NeRF Training

Our NeRF implementation is inspired by Nerfacto [21],
Instant-NGP [17], MipNerf360 [2], Infonerf [12], FreeN-
eRF [23], and Nerfacc [13]. Here we specify the model
computing F (x,d) = (c, σ).

Similar to Instant-NGP [17], we represent the radiance
field model with a neural multi-resolution hash map and a
small multi-layer perceptron. The hash map encodes an in-
put point x to a feature h ∈ Rm. The resolution at the
lowest level is 16, and it increases by a factor of 1.382 for
16 levels, with 2 features per level (hence m = 32). The
hash map has 219 entries per level. Because our focus is on
unbounded scenes, we use the contraction operator from [2]

to map points in 3D space to a unit cube before encoding via
the NGP hash map. The hash feature goes through a 2-layer
MLP with relu activation in the first layer, and no activation
in the second layer to form the “geometry” feature g ∈ R64.

For view-dependent effects, we encode the ray direction
d using a 4th degree spherical harmonic encoder, which
gives a feature s ∈ R25. Similar to [15, 21], we jointly
optimize a per-image latent code qj ∈ R16 where j indexes
images.

The color head of the model outputs c. The geometry
feature, the spherical harmonic direction feature, and the
per-image latent code are concatenated to form the input
[g, s, qj ] to the color head, which is a 3-layer MLP with
relu activation in the first two layers, and sigmoid in the
last layer. All of the MLP layers use 64 hidden neurons
(including the layers for the geometry feature). The den-
sity component of the model output is σ = QuadExp(g0)
where g0 is the first element of the geometry feature.

Nerfacto [21] uses the TruncExp activation function for
density, and observes this is better than relu because it en-
ables high post-activation density outputs with smaller in-
ternal parameters. In our preliminary experiments, we con-
firmed that TruncExp converges faster than relu, but also
found that it sometimes causes NaNs during training (which
is more likely when training many NeRFs, i.e., one per
frame of video). Therefore we introduce the QuadExp
activation function, which is more numerically stable than
TruncExp but also benefits from non-linearity to output
high densities,

QuadExp(x) =

{
exp(x) if x < 0

(x+ 1)2 otherwise
(16)

Similar to [2, 13, 21] we use a smaller density proposal
network, where the hash map has a course scale of 16, in-
creasing by a factor of 2, over 5 levels, with 2 features per
level, and 217 entries per level. The proposal network maps
an input point x to density σ, by first applying the contrac-
tion operator, then the hashmap, then a 2-layer MLP with
relu followed by QuadExp activation and 32 hidden neu-
rons.

Our method for training the proposal network is different
from [2]. Instead of using their histogram loss function, ev-
ery kupdate = 10 regular batches of optimization, we sam-
ple an additional batch of the same size, and evaluate σ from
both the full radiance model and the proposal model at each
point of the batch’s rays. Then we use a smooth L1 loss be-
tween the full and proposal σ’s. Only the proposal network
parameters are updated during this step, the full radiance
model is fixed. The motivation for this approach is simple:
the purpose of the proposal model is to estimate transmit-
tance to enable importance sampling, and the quality of the
estimation is determined by how closely the proposal den-

https://lifecast.ai


sities match the full model densities, therefore we just min-
imize this difference.

We use importance sampling during training as in [2].
Our initial Nc = 128 samples from the proposal network
are split into two groups of N/2. The first half are sam-
pled with uniform stratified sampling between Znear = 0.2
and Zmid = 10.0, and the second half are stratified samples
from inverse depth values between 1

Zmid
and 1

Zfar
, where

Zfar = 1000. After these initial samples, we draw a fur-
ther Nf = 64 samples using importance sampling from
the weight distribution. While baking the LDI, we increase
these paremeters to Nc = 256 and Nf = 128.

Our model uses a suite of regularization and loss terms
to improve generalization from sparse input views, and to
impart other desirable properties in the radiance field.

• We use distortion loss Ldist from MipNerf360 [2],
which pushes the weights in the linear combination of
colors for each ray to be clustered near a small number
of surfaces.

• We use occlusion regularization Locc from FreeNerf
[23], which penalizes density within a distance of tocc
units of a camera. This prevents a failure mode for
training where each image is represented by a small
cloud directly in front of the camera.

• We find it aesthetically pleasing for the radiance field
to be empty (instead of filled with random noise) in
regions of space which are not visible to any camera
in the dataset. To encourage this property, we sample
Nv = 1024 additional random points in each batch
within a ball of radius 100, then check if each point is
in any camera in the dataset’s frustum. Let the sampled
points be x1, . . . ,xNv

, and define visibility indicator
variables y1, . . . , yNv

. The radiance model evaluates
to densities σ(x) and colors c̄(x) (averaged from RGB
down to 1 channel). The loss is

Lvis =
1

N

n∑
i=1

yi
(
σ(xi) + c̄(xi)

)
(17)

• To further encourage unobserved regions to be empty,
we include a small penalty on all density,

Lσ =
1

N

n∑
i=1

σi (18)

• To improve generalization to novel views when train-
ing on only a few images, we include a regularization
term similar to ray entropy loss in InfoNerf [12], which
begins by normalizing the αi values in each ray to form
a probability density function,

α̂i =
αi∑N

i=1 αi + ϵ
(19)

Instead of computing the entropy of this distribution as
in [12], we use the Gini index, which produces slightly
better results in our preliminary experiments (we ex-
pect it is more stable due to not using log):

Lgini = 1−
n∑

i=1

α̂2
i (20)

• As usual, there is a photometric loss term which com-
pares predicted colors from the NeRF with ground
truth pixels in the training data, which we denote Lrgb.
We use a smooth L1 loss here instead of quadratic loss.

• After the first frame of video, we include a loss term
to encourage temporal stability, Lprev which is the
smooth L1 loss between σ according to the current
frame’s model and the previous frame’s model. Us-
ing only importance samples here would not regularize
parts of the scene which are behind the first surface, so
we instead compute this term on another set of 32 sam-
ples according to the initial sampling strategy.

The full objective with default hyperparameters is

L = Lrgb + 3e−2Ldist + 1e−3Locc + 1e−4Lvis

+1e−6Lσ + 1e−5Lgini + 1e−4Lprev

(21)

We use three instances of the Adam optimizer, one for
the radiance model, one for per-image latent codes, and one
for the proposal model, with initial learning rates of 1e−2,
1e−4, and 1e−2 respectively, and weight decay strength
1e−8, 1e−4, and 1e−6. The optimizer for the radiance
model applies weight decay only to the MLP parameters,
not the hash map parameters. We train for 5000 batches
with 4096 rays per batch. The learning rates are adjusted
according to the following schedule: during the first 100
“warmup” iterations, the learning rate ramps linearly from
0.01× the initial value up to the initial value. Then at mile-
stones of 1

2 , 3
4 , and 9

10 of the total iterations, the learning
rates decay by a factor of 0.333.

4.2. Datasets

We evaluate the proposed methods on our own dataset of
static scenes captured with an iPhone 14, and a few of the
light field video datasets from [5].

4.2.1 Light field video array [5]

Broxton et al. [5] captured several videos with a custom
camera array consisting of 46 time-synchronized Yi4k ac-
tion sports cameras distributed on the surface of a 92cm di-
ameter acrylic dome. These datasets illustrate several chal-
lenging phenomena for novel view synthesis, including vol-
umetric effects (sparks and flames), thin structures, and re-
flections. We show results on a shamelessly selected subset
of these videos which are most favorable to our method.



The dataset includes a pose and intrinsic parameters for
each of the cameras, with some distortion parameters. As
a preprocessing step, we rectify the images to remove lens
distortion before using them in our training pipeline. To ren-
der a video in ldi3 format, we treat each frame of video in-
dependently, and train a NeRF on the images for that frame,
then bake the frame into an ldi3 image. Finally, we encode
the sequence of ldi3 images using conventional h264 or
h265 compression (or ProRes if further editing is intended).

Broxton et al. [5] used only 7 of the 46 cameras be-
cause “using 46 input images during training would be pro-
hibitively expensive, even at low resolution”. The runtime
for training with our method does not depend on the num-
ber of images (batches sample pixels uniformly from all im-
ages), so it is possible to use all 46 cameras, but we use only
20 because the additional cameras beyond this cover a lot
of area that is outside the 180◦ field of view, and it wastes
samples on areas of the field that are never used, resulting
in slower convergence in the forward direction.

After rendering an LDI for each frame, we do some
minor manual cleanup to improve temporal stability, by
roughly drawing a soft mask over parts of the image that are
not changing, then blending the RGBA and inverse depth
values from one frame onto all of the other frames in the
masked region. This process takes a few minutes per video.
The need for this manual step illustrates a limitation in our
current NeRF video engine (solving for NeRFs indepen-
dently on each frame is not inherently temporally stable).
However, the fact that it is easy to fix manually with basic
image editing operations is one of the strengths of the ldi3
format.

4.2.2 Casually captured iPhone videos

We captured several static scenes using videos ranging from
4s to 20s in duration, using an iPhone 14, with 4K reso-
lution and 30 fps. The phone camera was held at arm’s
length, and moved in a square or circle shape to obtain
variety camera poses. The camera is on its widest field
of view setting, and has auto-exposure on. Before further
processing, we down-scale the videos to a maximum width
or height of 2048 (some are portrait, some are landscape).
We use the Lucas-Kanade method [3] to track key-points
between frames of video, then solve a bundle adjustment
problem using Ceres [1] to estimate the camera pose in each
frame, jointly with the focal length (because we are working
with videos from an iPhone, we can assume they are pre-
rectified, so we are able to achieve sub-pixel reprojection
error while only estimating focal length and no other intrin-
sic camera parameters). We use an iteratively re-weighted
non-linear least squares objective to reduce the effect of out-
liers from bad keypoint tracking, or from moving objects in
the scene such as foliage in wind, water ripples, or people.

After solving for camera poses in each frame of video, we
reduce the dataset to n = 30 images chosen to have maxi-
mal diversity in position using a farthest first traversal (this
prevents overfitting when the camera dwells in one place
longer than others during a video).

5. Comparison to prior work
Broxton et al. [5] presented one of the first complete sys-

tems aimed at capturing, processing, and streaming light
field video in a practical manner. Their method first es-
timates a multi-sphere image (MSI) representation of the
scene (MSI is a generalization of multi-plane images to
spherical shells). They use 160 layers for the MSI, then
condense these into 16 “layer groups”, each of which is
represented by RGBA and depth in equiangular projection
(similar to ours, but not inflated). From the layered depth
image representation, they encode a texture-atlas and lay-
ered mesh representation, with mesh vertex data stored in a
separate data stream. While [5] made significant progress
toward a practical light field video system, it has some is-
sues which limit widespread adoption:

• Processing time of 28.5 CPU hours per frame of video
is prohibitive and necessitated cloud processing.

• The layered mesh representation includes a separate
data stream which must be decoded and synchronized
with the h264 or h265 videos stream, which is not triv-
ial on all platforms, and makes it more complicated to
decode the format across a wide variety of devices.5

The additional data stream is also not compatible by
default with standard video editing software. The re-
sult is that it is not straight forward to do basic editing
operations like cutting several clips together with in-
dustry standard tools such as Adobe Premiere.

We compare runtimes with [5], but it is important to note
several caveats. With an Nvidia RTX 4090 GPU, our pro-
posed methods takes about 209 seconds per frame to train
the NeRF, and about 72 seconds to bake into ldi3 format
(at an output resolution of 5760× 5760).6 This is a roughly
365x faster than [5], but we are running on a GPU instead of
CPU. Furthermore, we are not quantitively comparing the
visual fidelity of the two methods in this document. With
our method, results can be improved at the expense of in-
creasing runtime by increasing the number of samples per
ray to Nc = 256 and Nf = 128, the number of batches
to 10000, and the number of rays per batch to 8192. We

5For example, some browsers intentionally prohibit finding out which
frame a video is on for security reasons, which makes it difficult to syn-
chronize video textures with a separate stream of data for vertex geometry.

6On 6/7/2024 we updated these results after integrating github.
com / NVlabs / tiny - cuda - nn for the neural multi-resolution
hashmap. Previously we implemented it in pure C++ LibTorch, and the
runtimes were 347s per frame to train and 83s to bake.

github.com/NVlabs/tiny-cuda-nn
github.com/NVlabs/tiny-cuda-nn


are actively improving the code, and further optimizations
or other changes which affect runtime may be in the open
source release after this report is published. Setting these
details aside, the overall result is that vast cloud resources
are no longer required, and this is now possible to render
lightfield video on a single workstation.

The ldi3 format does not require an additional data
stream for vertex geometry because it uses a 12-bit depth
map encoding, so it can be directly edited in any video tool,
and it is simple to decode on myriad platforms. Instead of
constructing an MSI and baking it to a texture-atlas and lay-
ered mesh, we construct a NeRF, then bake it into an LDI.
In recent years, NeRF has seen an explosion in popular-
ity due to its excellent results for photorealistic novel view
synthesis; a strength of our method is that it can be applied
with any new method of parameterizing and estimating a
radiance field. It can also be applied to a 4D radiance field
constructed from sparse input views.

Alternative approaches to “baking” neural radiance
fields into a format for real-time rendering exist, e.g.,
sparse-neural radiance grids (SNeRG) [10], but this and
other approaches are not applicable to dynamic scenes or
4D radiance fields. In contrast, our proposed baking method
can represent static scenes using typical image formats such
as jpg or png, and videos using conventional h264 and h265
compression and no extra data streams.

3D Gaussian splatting [11] is a fast algorithm for 3D
scene representation and novel view synthesis. Several
NeRF algorithms are comparably fast to train and render
in real time [8, 22]. Our implementation trains in minutes,
and once baked into an ldi3 it renders in realtime on limited
devices (e.g., an iPhone 7). Prior work has extended NeRF
and Gaussian splatting to 4D / dynamic scenes [6,9,14], but
these approaches do not encode the video in a standard for-
mat, and therefore do not benefit from dedicated video de-
compression hardware or enable editing with existing tools.

6. Limitations & Future Work
Here we discuss some limitations of the proposed meth-

ods, and ideas for improvement.

• If NeRF training does not produce a good result, the
resulting LDI will also not be good. For example,
this happens on the “Car” dataset from [5]. We sus-
pect the high-frequency repetitive pattern of the road
causes problems for the NeRF 3D reconstruction. This
could be mitigated by introducing further regulariza-
tion terms, e.g., the patch depth smoothness of RegN-
erf [18].

• Our approach to estimating a time-varying NeRF is
fairly simple (just estimate a 3D NeRF for each frame).
A 4D formulation could potentially improve temporal

stability, processing time, and/or generalization from
sparse inputs.

• ldi3 is optimized for compatibility with current de-
vices, but with only 3 layers, our heuristic still some-
times produces stretched triangle artifacts. Increasing
the number of layers makes it easier to avoid such ar-
tifacts, but is primarily limited by video decoding ca-
pabilities. Multi-view codecs are likely to be useful in
encoding the RGBA and inverse depth maps for more
layers.

• We use inflated equiangular projection for near 180◦

field of view, but other applications call for a full 360◦

field of view. It is straightforward to apply the same
methods for baking LDIs in any other projection (e.g.,
equirectangular or cube map for 360◦ content), with
any number of layers, etc. The only issue is that all of
the RGBA and inverse depth maps must be arranged
within the available space of the container format.

• The proposed methods generally produce photorealis-
tic novel views close to the origin, but rendering arti-
facts increase farther away (e.g., stretched triangle ar-
tifacts).

• The proposed methods to not explicitly model view-
direction dependent effects. In some cases, effects like
reflections and specular high lights are represented by
multiple transparent layers, but the spherical harmonic
data in the NeRF is collapsed to a single color. There
is unused space in the ldi3 format which could be used
to store additional data for view-dependent effects in
future work.

7. Conclusion
We present the one of the first practical systems for im-

mersive light field (a.k.a. 6DOF, or volumetric) video with
photorealistic novel view synthesis (within a limited view-
ing volume), high spatial resolution, accessible compute re-
quirements, real-time rendering on a wide variety of plat-
forms, and a compression format that is compatible with
existing video tools. Prior work has solved some, but not
all of these issues simultaneously. We do this by showing
how to bake neural radiance fields into immersive layered
depth images.

References
[1] Sameer Agarwal, Keir Mierle, et al. Ceres solver: Tutorial

& reference. Google Inc, 2(72):8, 2012. 11
[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5470–5479, 2022. 8, 9, 10



[3] Jean-Yves Bouguet et al. Pyramidal implementation of the
affine lucas kanade feature tracker description of the algo-
rithm. Intel corporation, 5(1-10):4, 2001. 11

[4] Forrest Briggs. Practical immersive volumetric video
for vr and virtual production, with layered depth im-
ages and stable diffusion, 2023. URL: https://
medium.com/@fbriggs/practical-immersive-
volumetric - video - for - vr - and - virtual -
production - with - layered - depth - images -
and-b842f0d346f9. 5

[5] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics (TOG), 39(4):86–1, 2020. 1, 2, 9, 10,
11, 12

[6] Ang Cao and Justin Johnson. Hexplane: A fast representa-
tion for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 130–141, 2023. 12

[7] Catid. Pack10. URL: https://catid.io/posts/
pack10/. Accessed: March 8, 2024. 5

[8] Daniel Duckworth, Peter Hedman, Christian Reiser, Pe-
ter Zhizhin, Jean-François Thibert, Mario Lučić, Richard
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